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ABSTRACT

A method of determining the response of composite structures sub-
jected to a sinusoidal forcing function is developed. The method uses
characteristic rigid body and elastic deflected shapes of the compo-
nents. The input required and limitations of a program using the
method are stated. A sample problem is used to compare results with

other methods.

I. INTRODUCTION

The modal combination program for dynamic analysis
of structures, as presented in this Report, determines the
response of a composite linear structure subjected to low-
frequency sinusoidal base motion of a restrained struc-
ture or low-frequency sinusoidal forces at points of a free
structure. The program is based on a method described
in JPL TR 32-330 by Walter Hurty. The intention in
developing the program was primarily to determine the
undamped modes of a composite structure and secon-
darily to get response to sinusoidal forcing functions,
which was required for problems related to current
testing practices and closed-loop stability of autopilot-
controlled space vehicles.

Models of components (basic systems) in forms of
geometry, normal modes, frequencies, lumped masses,
and elastic properties are required. Systems are devel-
oped from basic systems when the required compatibility
with the composite is imposed. Operation is divided into
five parts: (1) basic system processing, (2) system process-
ing, (3) composite processing, (4) forced response calcu-
lation, and (5) point acceleration and member stress
calculation. Any adjacent parts of the program may be
used in a single computer run.

The following calculations are performed in basic sys-
tem processing: (1) geometry, member properties, normal

mode shapes, frequencies, and modal damping coeffi-
cients are read in; (2) rigid body modes, modes describ-
ing the independent motion of redundant supports
(constraint modes), modes associated with concentrated
loads at unrestrained points (attachment modes), and
associated reactions are calculated, and (3) the modal
matrix, mass matrix, stiffness matrix, and damping matrix
are formed.

The following calculations are performed in system
processing: (1) required compatibility is imposed, and
(2) transformations from composite coordinates to system
coordinates, mass, stiffness, and damping matrices of
composite are developed.

The following calculations are performed in composite
processing: (1) undamped eigenvalues and eigenvectors,
and damped eigenvalues and eigenvectors are found,
(2) the transformation from uncoupled coordinates to
composite coordinates and the uncoupled combined mass
and damping matrix are developed, and (3) point accel-
erations of undamped mode shapes are punched by the
computer if desired.

The following calculations are performed during re-
sponse calculation: (1) the generalized forcing function
matrix is formed, (2) response of given control points is
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calculated and plotted, and (3) composite system gener-
alized displacements for frequencies which have the
largest response are punched by the computer.

The following calculations are performed in point
acceleration and stress calculation: (1) point accelerations
are calculated from composite system generalized dis-
placements punched on cards and transformations saved
on tape, (2) mass acceleration “forces,” the associated

* static displacements and related accelerations, are calcu-

Il. DEVELOPMENT OF METHOD

Any structural unit, within the limitations of the pro-
gram, may be used as a basic system.

The set of equilibrium equations for each degree of
freedom of a basic system in matrix notation is:

tm] (i} + [c] {4} + [k] {u} = {f}

[m], [c], [k] are the mass, damping, and stiffness
matrices. {u}, {u#}, {ii} and {f} are the displacement,
velocity, acceleration and loading vectors. The elements
of the loading and displacement vectors are assumed to
have the form A e /¢!, Future extensions of the modal
combination program may provide for other types of
loading.

Any linear combination of point displacements ({u};)
may be associated with a generalized displacement (P;).
The coefficients of the generalized displacement (dis-
placement when P; is unity) will be called a modal vector
({¢)}:). Some particular modal vectors have useful prop-
erties that will be mentioned later. An array of modal
vectors will be called the modal matrix ([¢]). A mod-
al vector times the associated generalized displacement
is the displacement of the points describing the general-
ized displacement. Therefore, the modal matrix times the
associated matrix of generalized displacement is the ma-
trix of displacements of points corresponding to the given
values of the generalized displacements ({u} = [¢] {P}).

\

lated, and (3) member loads are found using the deflec-
tions associated with either modal accelerations or
inertial loading.

Ingenuity is required in the use of the program primar-
ily in defining realistic idealizations of the components.

Future extensions of the program will allow non-
sinusoidal forcing functions, as most of the program is
not limited by this restriction.

FOR BASIC SYSTEM PROCESSING

Using the modal matrix [¢] as a transformation,
[M], [C], [K] and {F)} are defined as follows:

[M] = [¢]" [m] [¢]
[C] = [¢]" [c] [¢]
[K] = [¢]" [K] []
{F} = [¢]" {f}

Therefore:
[M] {P} + [C] {P} + [M] {P} = {F)}
where P; is the participation of the i*" mode.

Rigid body modes [¢z], are the displacements of the
points in the basic system when there is a unit displace-
ment (either translation or rotation) of the coordinate axis
from which the points are described. These modes are
calculated from geometry only. There are six such modes
if the structure is stable as a free body (no internal
hinges).

Normal modes uncouple the equations of equilibrium
when used as a transformation of coordinates. Normal
modes are input to the program on IBM cards and can be
determined either experimentally or analytically.

Constraint modes are those modes which result from
prescribing unit displacements at redundant restraints.



If it is desired to allow relative displacements between
the restraints, constraint modes are used.

Attachment modes are those modes which result from
a concentrated load at a point. If another system is
attached at an unrestrained point of a system and it is felt
that the resulting imposed loads will have a significant
effect on mode shape or stresses, attachment modes are
used.

Since idealized structures may be used which are not
stable with a restraint removed but which are not com-
pletely described without independent support motions,
the concept of links is introduced. This allows the calcu-
lation of the required modes by geometry alone without
recourse to elastic properties. Links are portions of the
structure that are hinged to the main body. The main
body has six rigid body modes, and each link adds at
least one additional rigid body mode to the system.
These additional rigid body motions of the link are super-
imposed on the rigid body motion of the basic system as
a whole.

The displacement of a point on the link is 0 for the
degrees of freedom defining link motion. The hinge line
(hinge point if there are two additional independent
generalized displacements) is defined by the displace-
ments at these points.

{u}, = [¢]. {P}L = {0}

A2

4

JPL TECHNICAL MEMORANDUM NO. 33-290

The matrix [¢], is extracted from the rows of the rigid
body modal matrix of the main body [¢z], corresponding
to the degrees of freedom defining the motion of link “L.”
This implies only that the origin of coordinates of points
on the link is the same as points on the main body. The
elements of the matrix {P}, are the rigid body general-
ized displacements of link “L.” There are precisely as
many dependent generalized displacements as there are
degrees of freedom defining joint motion. Partitioning
[¢], and {P}, into dependent and independent general-
ized displacements results in the following equations.

{u} = [qﬁ: i ¢D] ;-é—% = {0}

{D} = — [¢o]™ [¢:] {I}

1
b
= [¢0]7 [¢1]

In order to invert the matrix [¢p], it must be square
and non-singular. This condition is satisfied if the degrees
of freedom used to define the link motion are necessary
to define the common joint motion, and the number of
common displacements equals the number of dependent
generalized displacements for the link. For equilibrium
of all parts of the structure, the generalized displace-
ment of the link chosen to be independent must in fact
be independent. For example, in Sketch No. 1 it would be
improper to match the displacements along the x, axis

P} =

ROTATION ABOUT AXIS
PARALLEL WITH X,
AXIS .

MAIN BODY

Sketch No. 1

at both point 1 and point 2 since one of these is redun-
dant, or to match the rotation about the x, axis at either
point 1 or point 2 since this would prevent the desired
motion. It would also be improper to choose a rotation

about either the x, or x, axis or a translation along the x,
axis as an independent generalized displacement of the
link since these motions of the link are not independent
of the main-body rigid-body motion.
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The link displacements can now be written in the fol-
lowing form for points on the link:

— 1
=14¢: ¢D]L BRI {I}
{u} [ | — [¢0] [¢:]
[ 1 T
e 0= [ ], [
efining [¢z]z L — [¢0][¢s]

{u}r = [¢=]s {I}L

The matrices [¢,], and [¢p]. are the rows of the rigid
body modal matrix [¢r], associated with points on the
link and partitioned into independent and dependent
generalized displacements. The independent generalized
displacements of the links follow the rigid-body general-
ized displacements of the main body in the matrix of
generalized displacements.

An attempt will be made to justify using a truncated
set of normal modes. If a complete set of normal modes,
plus rigid-body modes and modes which describe the
deformation of the structure when one restraint is given
a unit displacement (constraint mode), is used, the modal
vector matrix is square and equilibrium is ensured in all
directions at all points (see JPL TR 32-530), but the size
of the problem is unchanged since the number of rigid-
body modes plus constraint modes equals the number of
restraints, and the number of normal modes equals the
number of degrees of freedom. Modes associated with
the higher frequencies have less effect on the response
of the structure than modes associated with lower fre-
quencies when the structure is excited at low frequencies.
Therefore, the modal matrix is reduced by eliminating
higher frequency modes, and equilibrium is no longer
assured in all directions at all points, but only in the
generalized displacements which have been retained.
Additional justification for neglecting the higher fre-
quency modes comes from the lower confidence that can
be placed in the higher frequency modes which have
been experimentally evaluated.

For test and computational simplicity, a second type of
constraint mode (attachment mode) has been provided
which allows concentrated loads due to the attachment
of other systems at points which are not restrained in the
analysis of the system under consideration. If a complete
set of normal modes were used, these additional modes
would be redundant as they are linear combinations of
the complete set of normal modes. There is no proof
given that the attachment modes are not a linear com-
bination of the truncated set of normal modes, but due

to the extreme truncation employed on large systems, this
coincidence is not expected in practice. The substitution
of attachment modes for constraint modes, where appro-
priate, allows the use of existing analysis as the basis of
normal modes. This substitution allows physical testing
for evaluation of mode shapes of a real structure without
requiring extensive fixtures to restrain a multitude of
attachment points, and also a greater part of the motion
is due to normal modes for which damping can be mea-
sured in log decrement tests.

The mass, damping, stiffness and loading matrices can
be partitioned, corresponding to the different types of
modes used, with the order of modes in each case being
rigid body modes (R), constraint modes (C), attachment
modes (A), and normal modes (N).

__._1_._._-1—._._|—-—..— ——
Mer! Mce v Mea 1 My C
____:_-.__J_-__-l——-— _—
Mugp 1t Muc 1 Myy :MAN A
— e e e —— —_—

MNR || MNc :MNA :MNN N

[Cent 0 0 ' 0 | (R
——Ac T \-x-
0 !'Cec' 0 ' 0 C
- ~ L,
+ T -
0 1 0 |CAA "0 A
=T [
| 0t 0 + 0 Cuwws \ N
[0 ! 0:0 +07](R Fr
___'r__.__L___—:—_._ —— —_—
0 'Kec) 0 + 0 o Fo
+ —_——— e e e e N = ———
0 ' 0 ! KKy A F,
__0 : 0 :KNA IK)wv;‘ N FN

Several elements of the stiffness matrix are 0 or diag-
onal. The elements associated with rigid body modes
[Ky¢] and [K¢y] are shown to be 0 in JPL TR 32-530.
[Kyy] is diagonal due to the orthogonality properties of
normal modes; [K.:] and [K¢,] are O since the load in
the attachment mode has no motion in the constraint
modes.

The generalized mass matrix [M] is defined by the
relationship [M] = ¢"['m ] [¢] because the point mass
matrix ['m] is diagonal. It is clear that any degree of
freedom that has no motion in either mode associated
with the element of [M] cannot contribute to that



element. For this reason, and because of symmetry, some
shortcuts can be taken in the evaluation of [M]. Only
unrestrained degrees of freedom need be considered in
evaluating elements associated with normal and attach-
ment modes. The only modification of this for constraint
modes is to add the mass of the constraint degree of free-
dom to the diagonal elements of [M¢.] (modal displace-
ment is unity). The mass of the constraint degree of
freedom is multiplied by the rigid-body displacement in
evaluating the elements of [Mcz]. All degrees of freedom
are used in evaluating [Mgg].

The stiffness matrix [K] is partitioned into degrees of
freedom that are unrestrained (U) degrees of freedom
that are associated with constraint modes (C) and re-
strained degrees of freedom which are omitted.

The equations of equilibrium associated with the unre-
strained degrees of freedom, and the loads applied in
the constraint modes can be written:

[KUU: K] [\-“—”—J = [0]
1 1

[uc] = — [Kpyl™? [Kyel

= [Kyy]™ [Kye]
[¢pc] = F———l———;‘l

The rows of [¢.] must, of course, be rearranged into
their original order and the restrained degrees of freedom
added. In order to invert [Kyy], it must be square and
non-singular. The calculation of [Kc] is as follows:

[Kee] = [¢c]™ [K] [¢c]

= [Kee] — [Kev] [Kee]™? [Kyol

= [Kecl + [Kev) [uc]
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The equations of equilibrium associated with the unre-
strained degrees of freedom and the attachment mode
loads [R,] can be written:

[Kyov] [ual = [Ro]
[us] = [Kyy]l™? [Ro]
[$a] = [u4]

except for restrained and constraint degrees of freedom
which = 0.

7] - [o4e]

Since [K] [¢4] = [Ro]

K.. | T
[—-—} = [w:w] [R.]
Kun !

From the known properties of normal modes

T

[K] [¢4]

[Kywd = [o*] [ Myx ]

Due to the lack of better information, the damping
matrix is assumed diagonal when the basic system is de-
scribed in terms of its modes. The damping coefficients
of the original set of equilibrium equations are never de-
fined. (This lack of definition of damping coefficients
places a basic limitation on the use of the mass accelera-
tion method for finding member loads. For this reason,
the option of finding member loads using modal displace-
ments was provided.)

Each basic system must be describable in the format
of one of the four types of structures used in JPL
TM 33-75:

1. Three-dimensional, pin-jointed members.

2. Three-dimensional, rigid-jointed members (I is same
in any direction).

3. Two-dimensional, rigid-jointed members loaded in

plane.

4, Two-dimensional, rigid-jointed members loaded out
of plane.

All basic systems need not be of the same structures type,
and the elastic properties need not be compatible with
any of the four types of structures if only rigid body and
normal modes are used.
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lll. DEVELOPMENT OF METHOD FOR SYSTEM PROCESSING

The basic system as defined by mode [¢], mass [M],
damping [C], and stiffness [K] matrices combined with
a transformation matrix [8]; (the method of calculating
[B]; follows) becomes a system which is attached to
other systems of the composite system. A basic system
may be used for more than one system.

Using the definitions:
(11 =[ g0 ]

me=[ o]

(Tl =[ Ar210]

[T],=[ 0:"1 J

_J{ }I-l}
”}‘{WL
the number of columns of the “0” matrices and the size
of the unit matrix are equal to the number of elements

in {P},, When I = 2, [8], = ['1] and a recursive pro-
cess will be developed to define the [B], when I > 2.

{P}, = [T, {P}

The elements of {P} are not all independent. The depen-
dent generalized displacements can be solved for in
terms of the independent generalized displacements,
making use of matching motions at connection points.
There are precisely as many dependent generalized dis-
placements as there are degrees of freedom with match-
ing displacements. The displacements to be matched are
U,and U

u; = <y>;[¢1; [T], {P}
u = <y>,; [¢]1; [T]: {P}
where <y>, and <y>, are the rows of the direction

cosine matrices that transform coordinates in the local
coordinate system of the parts into a common system.

Each [¢], and [¢], are the three rows of the modal
matrix associated with the displacement being matched,
and [T], and [T], are the transformation matrices for
the systems being joined. Subtracting the coefficients of
{P}, we define the row matrix <®>:

<d> = <y>;[¢]; [Tl — <y>, [¢1, [T]s

Repeating this process for each displacement being
matched and forming a matrix of the results, we have

<®>,
<®>:

<d> = [¢]{P}=0

Let [®#,] = those columns of [®] associated with redun-
dant generalized displacements {D}. and [®#,] is the
remaining matrix of columns of [®] associated with {I}.
After rearrangement,

(o2} 2] {5} =0

Expanding, we have
[®]{I} + [@] {D} =0

Therefore:

{D} = — [®p] [®]) {I}:

and

{{I}'} = [T] {I}:;, where [T] = F—_l__ﬂ
{D} ” = [@p]'[2)]

In order to invert the matrix [®,], it must be square
and non-singular. This condition is satisfied if the im-
posed matching motions are necessary to ensure the
required matching motions (problems sometimes arise
when attaching systems at two restrained points along
the line connecting them). The number of matching dis-
placements must match the number of dependent gen-
eralized displacements. For equilibrium of all parts of
the structure, the set of generalized displacements chosen
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to be independent must be in fact independent on each  multiplied by this transformation, and the resulting
application of this process. An example where this is not  matrices [8]; are stored.

satisfied is given. Two planar systems are attached at

three points along a line. Each system has only one mode The process just described is followed, as one system
with relative motion between the three points. Both of  is added at a time to the current composite system, and

these modes cannot be independent.

the process is repeated for each system to be added start-
ing with the second system.

The matrix [T] after rearrangement into the original

order of generalized coordinates is the transformation After the compatibility conditions between all systems
which reduces the degree of the problem from the total  have been imposed, the equations of equilibrium for each
number of modes of the parts to the number of indepen-  system can be combined in the following form as can be

dent modes of the parts. The matrices [T]; are post-  checked by inspection.

My 0 Lo [
o M. Yo |l e | (1) +
I | R
0! 0 MU

|

To preserve symmetry, both sides of the equation are ~ where

premultiplied by
B |

B

as is done for all transformations.

[H] = > [817 [M], [B]:
[Cl= b (817 [C1: 1B

[X] = 3 (817 (K], [B:

The equations of equilibrium for the composite can

now be written in the following form:

MI(TY + [C1{I}+ K {1} ={(F) (B = S 81 (F);
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\

IV. DEVELOPMENT OF METHOD FOR COMPOSITE PROCESSING

The equilibrium equations are now written in terms of
the independent generalized coordinates {I} which are
partitioned into the six rigid body modes {R} of the
principal system and the remaining elastic modes {E}
with the generalized mass, damping, stiffness and load
matrices similarly partitioned:

ERErEals
T - 1

A transformation is introduced which reduces the size
of the problem by six (the number of rigid body modes of
the principal system). This transformation depends on the

loading type:

R |- . R,
{-7_—} = [T:] {E} + {———}
E 0

For loading type No. 1 where rigid body accelerations of
the principal system are given:

0 . .
[Ts] = r——l——J and (K.} = (R)

As can be seen by expanding the set of equations asso-

ciated with {E} and moving the term [Hgz] {R} to the

right side of the equation, the elastic displacements can

be found directly using the effective forcing function
— [Hzz] {R) and the transformation is an identity.

[Hee) (EY + [Cos] (E} + Wl {(E) = — [Hsr] (R)

For loading type No. 2 where loads at a point are given
for a free composite system:

= |-_ [‘mmc]l - [‘m’ﬂ and {Rc} = [Hrr]™ {Or}

[Te] = I.\

In order to invert [Mgg] it must be non-singular; this
may require associating mass with some restrained de-
grees of freedom.

From the partitioned equations associated with the rigid
body modes:

(HMrr] {R} + [Mre] {E} = {QR}

Therefore: {R} = [Mrr]™ {{QR} = [Mre] {E}}

Substituting this in the set of equations associated with
the elastic modes:

[Her] [Hee]™ {{Qn} — [Hee] {E}}

+ [Hes) (E) + [Ces] {E} + [Hes) (E} = (s}

Rearranging terms, an equation solvable for {E} is
found: :

[utm] ~ [Har] [Hee)™ uzu]] (B) + [Css] (E)

+ [Kse] {E) = {{QE} — [(Her] [Heg]™ {QR}}»

Making use of the appropriate transformation and the
following definitions

(M] = [Te]" [M] [Te], [C] = [Te]" [C] [Tk),

[K] = [Te]" [K] [Te] and {Q} = [Tz]" {Q}

the equations of equilibrium can be written in the follow-
ing form:

[M] {E} + [C]{E} + [K] {E} = {Q}

While the matrix coefficients can be obtained using [T]
as a transformation matrix, they are developed directly in
the program. The transformation can be seen to give the
correct value of {E} and {R} by inspection.

The {R;} matrix represents the nonfrequency depen-
dent portion of the generalized coordinates.

At this point, the undamped eigenvalue problem is
solved and the eigenvectors associated with the lowest



frequency modes are used to form a transformation ma-
trix [V,] which reduces the order of the problems to a
level, such that the damped eigenvalue problem can be
solved with an existing program. Since the mass matrix
is non-diagonal, a triangular matrix [F] is found, such
that [F]7 [F] = [M] and the inverse of this matrix (also
triangular) is used as a transformation matrix which
transforms the mass matrix into a unit matrix prior to
solving the undamped eigenvalue problem. A simple
direct method of calculating both [F] and [F]-* is given
in “Theory of Mechanical Vibration” by Kin N. Tong.

Since {E} = [F] [V.] {Ey} and using the following
definitions

My d = [Vo]T [F]7 [M] [F] [Vy]
[ Co 1=1[V]" [F*]7[C] [F?] [Vi]
CKy ] =[V,]" [F]7 [K] [E7] [Vo]
{ Qv } = [V,I" [F]" {Q}

we observe that [M,] = [F1 Jand Ky ] = [Cw? .

JPL TECHNICAL MEMORANDUM NO. 33-290

The equations of equilibrium can be written in the fol-
lowing form:

F1J (B + 1) (Eo) + ot 1 {Eo) = {Q0)

The damped eigenvectors [V,] are used to transform
the equations of equilibrium into a form in which the
variables are separated.

Since {Ey} = [V),] {z} and using the following defi-
nitions

DRI =2Fal Vol [Vo] + [Vol” [Cu] V]
(D} = [V,] {Qs)
FRI{Z) - [CRICed (Z) = (D)

This last procedure is described by K. A. Foss in
“Coordinates Which Uncouple the Equations of Motion
of Damped Linear Dynamic Systems,” Journal of Applied
Mechanics, Vol. 25, 1958. [ « ] is the matrix of complex
eigenvalues and [V,] is the associated eigenvector ma-
trix. {C¢] and {Q;} are the damping and loading
matrices after transformation into the undamped normal
mode coordinates { Ey }.

V. DEVELOPMENT OF RESPONSE CALCULATION

With the variables separated, the loads given, and
using the equality Z = joZ, the generalized coordinates
can be found from the equation:

D, 1

Rnn i(l) - an

Z,=

The matrices (R ], [al, [¢], [Bl;, [T], [Mgx]
where [T] = [Tk] [F*] [Vy] [Vs]
have been saved on tape from previous computations.

If loading consists of an arbitrary sinusoidal accelera-
tion of the rigid base of the primary system (Type 1 load-

ing),
{Q} = — [Mgg] {R}

If loading consists of a sinusoidal force at a point on
an unrestrained structure (Type 2 loading),

{Q} = [BI" [¢]1” {f}
It is observed that:
{D} = [T]1{Q}

These participation factors can be transformed into
the displacement of points within a system as shown
in the following equation:

. » {(Bo) [ _ .
) =[] 18] [TH{Z} + == ¢ = 61 81 (T}

9
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The accelerations of up to 10 control degrees of free-
dom are calculated as a function of frequency and the
modulus of these accelerations is plotted. The composite-

system generalized accelerations { I} corresponding to
the frequency which maximized control accelerations are
punched by the computer on IBM cards.

VI. DEVELOPMENT OF POINT ACCELERATION AND MEMBER STRESS CALCULATION

The acceleration of each degree of freedom in a system
is calculated using the composite system generalized
accelerations { I } which were punched on cards in the
response calculations.

Inertial loads are found using these accelerations.
These loads are applied to the basic system and the
resulting deflections are superimposed on the constraint
mode deflections, rigid body mode deflections and de-
flections due to loads at attachment points which are
found as follows.

Defining the matrices [R,] and {R,} as the matrix of
loads associated with attachment modes. and a matrix
of unknown multipliers, the loads at attachment points
([Ro] {R,)) are found from the equations of equilibrium
associated with the attachment modes which are

[MAR | My i Maa i MAN] + [[Cand {i’A}
|

+ [ Kae K]}H = (F.)
where {F.) = [417 [Ro] {Ra) + [4417 (£}
= [Kul (Ra} + [617 (f)
since [Ro] = [K] [¢4], [Kua] = (41" [K] [4a]
and {f,) is the forcing load matrix for Type 2 loading.
Notice that [K,y] is not equal to [0] since normal

modes can have displacements at attachment mode load-
ing points. The deflection due to the loads at attachment

points is [¢4] (R4} since [k] [¢] = [Ra].

10

These deflections are multiplied by —«? for compari-
son with the modal accelerations.

Deflections associated with either set of accelerations
are used to calculate member loads. The 12 X 12 mem-
ber stiffness matrix [K] is developed as was done in
JPL TM 33-75.

{R} = [K] {u}

where {u} is the set of deflection of both ends of the
member, and {R} is the corresponding set of reactions.
The member loads are dot and cross products of the load
vector at the end with the direction cosine vector 3 of
the member.

Axialload (P) = 7 ¢ R (first 3 elements of R)
Torsional (T) = 7+ R ( d3el tsof R
load ) = 5 second 3 elements of R)
Shearload (V) = |y X l_i'| (first 3 elements of R)
Momentat — ,/ y 1=+ R| (second 3 elements of R
first end 1) = |7 | (second 3 elements of R)
Momentat =,/ — |= % R| (fourth 3 elements of R
other end (Mg) = |7 | (fourth 3 elements of R)

The rigid body deflections are included only to allow
comparison between the point accelerations which are
based on modal accelerations and those based on inertial
loading; they do not affect member loads. The iner-
tial loading method of determining member loads implies
no member loads due to internal damping. An alternate
method of determining member loads directly from
modal deflection is also provided for highly damped
structures or structures with point loads at points with-
out attachment mode loads which are not properly loaded
by the mass acceleration method.
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VIl. PROGRAMMING

A. Input Format Control Card 3
Basic System Input N: N. E v
asic dysrem Inpu W
Control Card 1 N, = number of stiffness matrix elements to be altered
N, N (51\; 38 ) N, N; N, = 1, if rigid body modes to be calculated

= 0 otherwise
N, = structure type
E = modulus of elasticity (in thousands of pounds/

= 1 for pin-jointed structure sq in.)
= 2 for rigid-jointed structure , = Poisson’s ratio
= 3 for planar structure loaded in plane
= 4 for planar structure loaded out of plane Joint Cards
N, = record number at which basic system information One card is for each joint, with cards in monotonic
is to be loaded on logical Tape 11 increasing order.
N:; = number of links in rigid body JT LK X, X, Xs
N, = number of normal modes to be used (218, 3F8.2)
N, = 1 if viscous damping is present JT = joint number
= 0 otherwise LK = link containing JT

(LK = 0 for points on main body)

Control Card 2 (X,,X,,X3) = spatial coordinates of joint
Name N, N, N, N, N, N, N,
(2X, A8, TI8) Member Property Cards
Name = alphanumeric run number (6 characters or One card must be supplied for each member_
less)
N. = number of joints in basic system ITA JTB A A, 4
(218, 3F8.2)
N, = ;1:::)1)& of members in basic system (may be JTA = joint number of end one of member
TB = joint ber of oth d of b
N; = number of attachment modes (may be zero) I J number er end of member
A, = member area if A; 40
N, = 1 if weight cards included

= outside diameter if A; = 0

= 0 otherwise
A, = bar moment of inertia if A; =0

Ny = = 3:;.::: (())ff f]r(::(;i n\):’lth one or more restrained — wall thickness if A, = 0

. A, = bar K or zero if area, moment of inertia and
N = number of degrees of freedom per joint torsional stiffness are to be computed from out-
side diameter and wall thickness. Only a posi-
tive number need be supplied if area given and
= 0 otherwise structure of type 1 or 3.

N, = 1if stiffness matrix output desired

11
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Restraint Cards

JT N, N, = N,
718)

N, = 1, if restrained against motion in subscripted de-
gree of freedom (see weight input for order)

= 0 if unrestrained

= 2 if constraint mode degree of freedom

x>
]

number of degrees of freedom per joint

Stiffness Matrix Elements
i § AK;j
(218, F8.2)

(i §) =row and column, respectively, of element in
uncontracted stiffness matrix (inserted before
rows and columns have been deleted to ac-
count for restraints)

AK;; = incremental change to element K;; (in 1b/in.,,
in.-lb/rad or Ib) of original stiffness matrix.
The new element K;; = K;; + AKj;

One of these cards must be supplied for each stiffness
matrix element to be altered. This information is to be
supplied only if N, on control card 3 is greater than 0.

Weight Cards

One card must be supplied for each joint.

] T BLANK W1 Wz W3 W4 W5 W6
(218, 6F8.2)

This input will vary depending on the structure type
(units are 1b and in.? Ib).

JT = joint number

Type 1 and Type 2 Structures
W, = weight in X, direction
W, = weight in X, direction
W, = weight in X; direction
W, = moment of inertia about X, axis
Ws = moment of inertia about X; axis

W, = moment of inertia about X; axis

12

Type 3 Structures
W, = weight in X, direction
W, = weight in X, direction
W3 = moment of inertia about X axis
W, = weight in X; direction
W = moment of inertia about X, axis

Ws = moment of inertia about X, axis

Type 4 Structure
W, = weight in X, direction
W. = moment of inertia about X, axis
W, = moment of inertia about X, axis
W, = weight in X, direction
W, = weight in X, direction

W, = moment of inertia about X; axis

Attachment Mode Cards
One card is supplied for each load.

]T N F1 Fg s Fk
(218, 6F8.2)
JT = joint where load is applied

N = dummy No. not to be used

F; =load (Ib or in.-Ib) in i** degree of freedom (see
weight input for order)

k = number of degrees of freedom per joint

Normal Mode Cards

One card per unrestrained degree of freedom. If 1 in
second field of first card, these cards are output from
“STIF-EIG” (see JPL TM No. 33-75, as altered) and are
added without change except for elimination of cards
corresponding to restraints.

U1 Uz Us U4 U5 UG

(6E12.5)
U; = motion (in. or rad) of degree of freedom in
it" mode.
Rigid Body Information

This information is supplied in sets of three cards, one
set per link, and are in serial order according to link.



Card 1
] Cl Cz C3 C4 C5 CG
(718)
Card 2
K C1 Cz Cs C4 CS CG
(718)
Card 3
L Il Ig 13 14 15 IG
(718)

The total number of “I’s” on each set of 3 cards (exclu-
sive of joint numbers) should = 6.

J, K = joints defining hinge. If K = 0, the program
will assume one joint defined link motion.

Cn =1, if there is common motion between the link
and the main body at the joint in the mt
direction.

= (0 otherwise

I, =1, if the link has an independent degree of free-
dom in the n'" direction.

= ( otherwise

L = dummy number not to be used

Modifications to Generalized Mass Matrix

J.K, aM
(218, E16.4)

J = row of element in matrix
K = column of element in matrix

AM = addition to element (M,x = M,x + AM).

Frequencies

F, F, -+ F,
(9F8.2)

F; = frequency of i*" normal mode (cycles per second)

Modifications to Generalized Stiffness Matrix

M N aK
(218, E16.4)

M = row of element in matrix
N = column of element in matrix

AK = addition to element (Kyy = Kyy + AK).
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Viscous Damping Coefficients (if N;oncard 1 = 1)

Cin Cop
(OF89)

Cxx = K diagonal element of damping matrix (in.-Ib/
sec) order of elements rigid body mode, con-
straint mode, attachment mode and normal
modes,

(1 number per mode, 9 per card)

System Input

Control Card 1 (first card if no basic system processing
this run)
N, N, N, N, N;
(518)

N, =1
N,=N;,=N,=N;=0

Control Card 4
N1 N2 N3
(318)

N, = number of basic systems to be used to define
systems.

N, = number of systems to be used in total structure.

N,

number of degrees of freedom to be deleted
from total structure.

Deleted Modes (N; numbers, 9 per card)

D1 D2 se e Dk ees s
(918)

D) = the k** mode to be deleted from the total struc-
ture. (Modes are eliminated as each system is
constrained. The modes to be eliminated as any
system is constrained must be in monotonic in-
creasing order.)

k = mode in system under consideration plus total of
all preceding systems (order of modes in a sys-
tem is rigid body, constraint, attachment, and
normal).

Basic System Location

Ly L, o+ Li +o*
(9I8)

(N, numbers, 9 per card must
be in monotonic increasing
order)

Ly = record number on Tape A6 of k'" basic system

13
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Basic System Number of System

M1 Alz coe Mk cee
(918)
M; = basic system number of the k'" system

(First system is principal system, and more than
one system may reference the same basic system.)

(N, numbers, 9 per card)

Note 1

The following information through the compatibility
cards is to be supplied in sets. One set for each system (I)
except for the first. System I is the system being added
to the composite.

Control Card 5

NJI, NOUT 1, NOUT2
(318)

NJI = number of other systems J to which the I'" sys-
tem is attached. Systems J are already part of
the composite and system I is being added.

N OUT 1 = 0 causes system transformations 8, to be
printed at each step.

N OUT 2 £ 0 causes ¢, & ¢; to be output for system I.

Note 2

The following information through the compatibility
cards is supplied in sets, one set for each Jt* system
(already part of composite) to which system I is attached.

Joint Cards

NJ L JT1 JT2 -~
(918)
NJ = system number of the Jt* attached system.

JTx *o+ JTu

L = number of sets of geometrical transformations
of J** and I'* systems.

JTx = the number of joints in the K' transformation
of systems J and I.
Note 3

The following information through the compatibility
cards is to be supplied in sets, one set for each transfor-
mation of the J and I systems.

Spatial Transformations (2 cards)

[A(M,N),N =123],M = 12,3
(9F8.2)

14

A is transformation matrix from coordinates of J or I
system ({u’} = [A] {u}, where u is along system coordi-
nates and {t'} is along common coordinates) to a com-
mon coordinate system. Order is A, Ais, Aus, Az, Ao,
Az, Asy, Aso, Ags. ([A] [A)? = [M1 ].) The transforma-
tion for the J system (already part of composite) is
followed by that for the I'" system (system being added).

Compatibility Card
JT] JT1 N, N, - N;
(918)

One of these cards must be supplied for every joint in
the current transformation.

JT] = joint number in the J** system
JTI = joint number in the I'" system

Nx =1 if common motion between JTI and JT] in
the K" direction in the common coordinate sys-
tem (each 1 corresponds to a mode in the de-
leted mode list).

= ( otherwise

Composite Input

Control Card 1
N, N; N; N, N; (first card if no system pro-
(518) cessing this run)

N, = 2 if no system processing this run
= () otherwise
N2 = 0

N, = 1 for type 1 loading (base acceleration of con-
strained composite system)

= 2 for type 2 loading (load at point of unrestrained
composite system)

N,=N; =0
Control Card 7
N, N,
(218)

N, = number of eigenvectors to be retained

N, = > 0 if printed displacements for all systems
required

= < 0 if printed and punched displacements re-
quired



Dynamic Response Input

Control Card 1

Nl N2 N3 N4
(518)

N, (first card if no composite
processing this run)

N1=3
N,=N;=N,=N;=0

Control Card 8

N, N. N,
(318)

N, = number of critical points < 10
N, = 1if base accelerations to be given

= 2 if load at points on an unrestrained composite
structure to be given

N; = number of loads < 10

System Numbers of Critical Points

NS, NS, NS, ++-
(918)

NSx = system number corresponding to K critical
point.

Degree of Freedom of Critical Points

NF, NF, NF, -
(918)

NFy = degree of freedom of K** critical point (degree
of freedom in basic system with 6 degrees of
freedom per joint)

Frequency Information (radians per second)

wp of Ao

(3F8.2)
wp = initial value of o
oy = final value of »

Aw = step size (a value of one fifth the smallest real
part of the complex eigenvalues should be satis-
factory)
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Load Information
1 S F L, L, *+ L
(I1, I7, 18, 6F8.2I8)

I =0 if not last joint-loaded; blank if last or only
joint-loaded

IND (1 card for each

load)

S = system number of load point for type 2 loading

F = joint number of load point for type 2 loading

L; = amplitude of sinusoidal forcing function in it*
direction

IND = 2 if plots of response required; 0 if no plots
required

Accelerations and Member Loads Input

Control Card 1
N, N. N; N, N; (first card if no dynamic re-
(518) sponse required)
N, =4

N,=N;=N,=N;=0

Control Card 9

N1 N2 NC(I),
(918)

I=1, N1

N, = number of systems in composite
N, = number of loads

NC(I) = 1, accelerations and member loads required
for System I

= 0, not required

Load Information

The following information through participation fac-
tors is required for each load for which accelerations and
member loads are being computed:

Control Card 10

N TYPE
(18)

N TYPE = 1 if base accelerations given

= 2 if load at points of an unrestrained com-
posite structure given

15
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Joint loads (if N TYPE = 2 only) Data identical to
load information

I S F L1 Lz b LG
(I1, 17, I8, 6F80)

I =0, if not last joint-loaded
= blank if last or only joint-loaded

system number of load point

S
F = joint number of load point

L; = amplitude of sinusoidal forcing function in it®
direction

Participation Factors

o, [PR(I),I =1, N]

(6E12.4)
i o, [PI(I),I = 1,N]
(6E12.4)
® = forcing frequency

PR(I) = real part of I'® participation factor
J PI(I) = imaginary part of I'" participation factor

N = number of generalized displacements in com-
posite system

Note 4
! These cards are punched by computer during response
calculations and desired sets are hand selected.
Note 5

The following information to the end of this section is

> »

required for each system indicated with “I’s” on control
card 9.

Number of Loadings

NF
(1)
NF = number of loading conditions for System I

The following card is required for each load:

‘ Option Card

| N1, N2, N3
~(3I8)

N1 = 0 if modal displacements are to be used to find
member loads.

=1 if D’Alembert loads are to be used to find
member loads.

N2 = 0 if only member load amplitudes required.

= 1 if input member properties, direction cosines
and components of member loads required also.

N3 = Load number (1 to N, Card 9) to be used.

B. Output Format

1. Basic System Output

a. Basic system input, except normal-modes fre-
quencies and damping, printed

o

. Stiffness matrix printed if N, = 1 on control
card 2

c. Modal matrix [¢]
d. Generalized mass matrix (Ib-sec?/in.)

e. Generalized stiffness matrix

-

Generalized damping

2. System Output
a. System input printed

b. B, of incomplete composite, ¢, and ¢; printed
on demand (control card 5)

c. Transformation matrix [B]; for each system
printed

3. Composite System Output
a. Composite system input printed
b. Generalized mass matrix [m]

c. Generalized stiffness matrix [k]

(=]

. Generalized damping matrix [c]

e. Undamped eigenvalues (equal to generalized
stiffness matrix diagonal elements)

f. Undamped modal matrix [TzF-'V,] printed

g. Generalized damping matrix in terms of un-
damped normal modes

h. Damped eigenvalues [~«.] and associated
eigenvectors (complex) [V,]



i. Diagonal elements of combined mass and
damping matrix [R] and maximum normal-
ized off-diagonal absolute value

j. Damped modal matrix [TRF-'V,V,] real ele-
ments of each vector followed by imaginary
elements

4. Load Dependent Output¥* (repeated for each
loading)

a. Dynamic loading input is printed

b. Load vector {D} (complex)

c. Acceleration of control point at each increment
of frequency (U complex); magnitude also

printed and the magnitude plotted if IND = 2
on load card

d. Participation factors for frequency which maxi-
mized absolute values of control point accel-
eration (complex values of composite system
accelerations {P} are also output on IBM cards);
(c.) and (d.) are repeated for each control point

. Accelerations and Member Loads
a. Load factors {R,}

b. Point accelerations {U} and {{/"}

c. Input member properties, direction cosines,
and components of member loads (if N3 = 1
on load card)

d. Member load amplitudes

C. Limitations

1. Basic Systems

a. Degree of freedom of structure after deletion
of restrained degrees of freedom < 130; also
>1

b. Joints in structure < 60
c. Members in structure < 200

*Qnly amplitude of D, U and P is given; the term ei®? is under-
stood.
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d. Components of restraint < 200
Total number of modes < 72
Number of constraint modes < 20

. Attachment modes < 60

. Rigid body modes < 26

Structures, having links hinged to each other,
prohibited

5@ 0

-

j. No way to combine symmetric and anti-
symmetric modes of a symmetric structure if
either constraint modes or attachment modes
are required, as the constraints are different.

k. Modal damping must be a real diagonal matrix.

. System

a. The total number of compatibility conditions
between composite system and system < 45
(one mode eliminated for each compatibility
condition).

b. The principal system can have only 6 rigid
body modes.

. Composite System

a. Total number of modal vectors < 100 at any
time (number = total in all systems already
added, less number of restraints already im-
posed)

b. Total number of systems < 30
c. Total number of basic systems < 30

d. Specified dependent modes must be such that
the remaining set is, in fact, a set of indepen-
dent modes

e. Total number of restraints < 250

f. Rigid body modes of principal system cannot
be used as dependent modes and rigid body
modes of other systems must be used as depen-
dent modes

g. Number of undamped modes retained < 50

17
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i8

D. Flow Chart

Note: Reordering of rows and columns and deletion or expansion of restrained

degrees of freedom are not shown.

Card Input ‘

Basic System Processing

{
—- form [Ku] N [KCI | KCC]
]

[~ [¢pc] = — [Ki17 [Kio]

— [¢4] = [Ky] [R4]

—— read {¢x]

form [¢z]o

——®= form [¢]. see text

1
[or]le = [¢r]ls F[‘DD]-I [Qﬂ

for points on link only

Yes last link No

(M] = [¢]"[m] (4]

partitioned for economy

[Kee]l = — [Kcr: Kco] E_‘E"'_]
| 1

[Kia]l = [94]7[Ral, Kya = [¢x]"Rs, [Kax] = [Kyal”

1
(2n)*

——® Kyl = Cf2d CMaxd

———» read [C]

Y

Yes [Tast basic|  NO

{ system

System Processing
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ow| form & seetext -
Erto]
— [@p]7 [@]
(81 = [T] (selected rows)
I=1
(81, = [B.(T] dE—
J=]+1
Yes No
Yes__[Tast System

[H] =3 [B17 [M]; [B):

[c1=%2 [817 [C): (B

X1 =3 (81 [K); [BL:

I

|

Composite Processing

+fLType LoadingJ
Y ¥
0 — Mpg'Mze
TR - < TR =rs_-
=] =
M = [Mgg] M = [Mgg] — [Mgr] [Mgr]? [Mze]
[ ] ]

C=CgandK=KE

find [F] (triangular) [F)T[F] = [M]

find [F-]

[Kr] = [F?]7 [K] [F]

find [Vy] and [ »? ]

eigenvectors and eigenvalues of [K7]

[Cul = [Vu]T[Te]"[C] [Tk] [Vy]

find [Vp]and [« ]

19
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damped eigenvectors and eigenvalues

CRI=2[a][Vo]"[Vo] + [V5]"[Cy] [V5]

[T] = [T:] [F*] [Vy] [Vs]

Y

Response Calculation

1 rﬁype Loading}—+ 2

» read {R)} F read {f}
{Q) = ~ [Mg] {R} {Q) = [B17[417{f}
{Ro} = (R} {He) = [Mgal™ {Qx)
B = A
(D) = [T]{Q}

L—." Zn=—m2(D” 1 )

Rupn jo —an

R,
{i} = [¢] [B] { (T:] {z} + 3-0-$} (plot)

selected rows of ¢ & associated B

. R
punch {P} = [Te] {7} + ;——% associated with peak values
0

Y g

Point accelerations and member loads

L {ii} = [$] [8] {P}

{fm} = Cm ] {i}

{R.} = [Ku? 3[M4x] {P} "(—Z' [Casdld {P}

1 .
— = [Kux] {P} = [$]" {f2}

[0

{f} = {fm} + [Ro] {R4}

i = = o [KI* {f}

{R} = - -l; [K] {ii} for each member

20
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l find P, T, V, Mp, My, (use dot and cross products with elements of {R})J

Yes &

last loading No

End

Vill. EXAMPLE PROBLEM

An example problem is given to demonstrate the pro-
gram. The problem chosen is the damped vibration
absorber with two degrees of freedom. There is great
flexibility available in the solution to this problem, and
the arrangement shown is not chosen for its simplicity,
but to illustrate some of the novel aspects of the program.
The link was used as a part of the second system only to
demonstrate links. In practice, it would have been sim-
pler to merely restrain the second point in the X; direc-
tion and omit the third point. The coordinate system at
the junction of the two systems was chosen only to show
that it was not necessary to use the coordinate system
of either part. This property is useful in sliding joints of
arbitrary direction. A normal mode was used in addition
to the rigid body modes for the second system. A con-
straint mode or an attachment mode would have done
equally as well. Since as many independent modes were
used as there are total degrees of freedom in the system,
the results should be exact and do in fact agree with the
results of another method of solution for this simple
problem given in “Mechanical Vibration” by Den Hartog
(page 93, 4th Ed.). Points based on the equation given are
plotted on the output curve.

Note that both basic systems and the composite sys-
tems (see Sketch No. 2, 3, and 4) were processed and the
dynamic response calculated in the same run (1 in first
field, and 0 in second field of the first control card
following the second system). The program was run a
cecond time for the point accelerations and member

stresses. This procedure was followed because card out-
put of the first run was part of the input for the second
run. The option of using modal accelerations instead of
accelerations calculated by the mass acceleration method
to calculate member loads was used, since the second
system was highly damped. The comparison of accelera-
tions as calculated by each method is good for the un-
damped first system and bad (as expected) for the
highly damped second system.

BASIC SYSTEM | (PRIME)
Xz
Iy

k=10, W=3864

PAAAAAAR——— X,
® Ro =10

AN

s
e
e

+Q® (2,-n

Sketch No. 2
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BASIC SYSTEM 2 (DAMP)

X
[y
I
f= 27 ° 0.159 cps
€ =01 C; =00l
#:005 W:1932
—1 =
Xy @ f @ (o,-n
0.0 LINK
(3 (-1,-1) ON LINK
Sketch No. 3

COMPOSITE SYSTEM

SINUSOIDAL
FORCED MOTION #—»
OF BASE

\\\\7

X

Sketch No. 4
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A. Input Data

The following pages are facsimiles of printout input data.

23
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B. Output Data

The following pages are facsimiles of printout output data.
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JOINT 1
1 0.100ucCE
2 0.

3 0.

« 0.

5 0.

6 0.
JOINT 2
1 0.1000CE
2 o.

3 6.

4 0.

5 0.

6 0O.
JOINT 3
1 0.1000CE
2 o.

3 0.

4 0.

5 o.

6 0.
RUW 1
0.2000€ C1
ROW 2
0.

ROW 3
0.

ROW 4
0.

ROW 5
0.

ROW 6
-0.

RUW 7

__0.1000€ C1_
ROMW 1

0.
ROW 2
0.

ROW 3
0.
ROW 4
o.

ROW S
o.
ROW 6
0.
ROW 7
0.
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EASIC SYSTEM PRIME
STRUCTURE TAPE NC. UF NORMAL DAMP ALTER NO. OF NC. OF ATTACH
TYPE POSITICM LINKS MOCES €00t COLCE JGINTS MENMBERS MOUES
2 1 o] 0 Q -0 3 4] 1
MASS JOINTS NC. OF oLt EDIT RIGIC BOCY ELASTIC POISSON'S
COoDE KESTRAINED JCINT CCDE COUE CODE ¥CDULUS RATIOD
1 3 & 4] 1 1 0. Ce
JCINT COORDINATES
JOINT LINK Xt X2 X3
1 -0 0. C. 0.
2 -0 0.100CE 01 C. 0.
3 -0 U.200GCE 01 -C.1CCCE Q1 O.
RESTRAINTS
JUINT 1 12 13 I4 15 6
1 1 1 1 1 1 1
2 0 1 1 1 1 1
3 1 1 1 1 1 1
STIFFNESS MATRIX ALTERATIONS
1 J INCREMENT
7 1 C.10C0E C1
WKEIGHT MATRIX
JUINT wl w2 W3 wa w5 L1
L C. Ua C. Q. 0. Q.
rs C.3864NE 03 0.38640F 03 0,38640E 03 0. 0. O.
3 Ce 0. 0. Q. Oa 0.
ATTACFMENT MCCE LOACS
JOINT L1 L2 L3 L LS Lo
2 L.1000VE Cl O« [N -0. -Q. -0.
MOUAL VECTOR MATRIX
0l 0. Ne C. 0. -C. C.
G.1CU0CE CL 0. -0. 0. O O.
0. C.1C000F 01 G. -0. % 0.
Ua 0. 0.10000€ 01 O. Ge. C.
O. 0. C. 0.1000CE 01 0. C.
Ue 0. Q. 0. C.1CUU0E €1 G.
a1 0. C. 0. 0. -0. 0.10000E 01
J. 100008 C1 0. -C. Qe G.1COC0E C1 C.
Ue 0.1C000E 01 O. ~0.1000CE 01 GC. 0.
Ge 0. 0.1C000E 01 O. 0. 0.
' 0. C. 0.1C00CE 01 0. .
Ue 0. O. 0. C.1COROE C1 OC.
01 0. 0. Q. O. G.100G0€ 01 C.
0.10000€ 01 0. -C. 0. 0.2CCCOE C1 G.
Ca V.1CO00E 01 -C.10000€ 01 -0.2000CE 01 O. C.
0. C. 0.10000E O1 O O 0.
0. O. 0. 0.1000CE 01 0. Q.
Do Je Ca 0. C.1CCCOE 01 C.
GENERALIZED MASS MATRIX
C. C. 0. C. ~C. C.100CE 01
U.1000€ Q1 C. C. . C.1000€ Ci O.
0. €C.1000E 01 C. -G.10C0E 0} -C. C.
0. Ce 0. C. -C. 0.
Ce -C.1C00E 01 O. C.10COE 01 -C. Ce
G.1U00E 01 -C. ~0e -0. C.1000E C1 -0.
G _c- 0 . .G -c. 0.10CCE €1 __
GENERALIZED STIFFNESS MATRIX
Ce O. C. Q. C. 0.
C. C. Q. G. c. C.
(V8 C. 0. C. C. Q.
0. C. 0. C. C. C.
0. 0. 0. C. C. 0.
0. c. 0. C. C. O.
C. C. Q. 0. C. G¢.100GE Q1
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EASIC SYSTEM  DAMP
STRUCTURE TAPE NC. OF NORMAL DANP ALTER NC. OF NO. OF ATTACH
TYPE POSITION  LINKS MOCES COBE COCE JOINTS MEMBERS MUDES
1 2 1 1 1 -0 3 1 0
MASS JUIRTS NO. DF oLt EDIT  RIGID BOLY ELASTIC POISSON'S
CODE  RESTRAINED JOINT CLDE copt COCE MCDULUS ~ RATIO
1 3 3 1 1 1 1.CO00E 06 0.
JOINT COORDINATES
JUINT LINK X1 x2 x3
1 -0 0. 0. 0.
2 -0 0. -C.1CCUE 01 0.
3 -0.100CE 01 ~0.1CCOE Ol 0.
VEMBER PROPERTIES
JOINT A JOINT B at a2 A3
2 3 0.100CE 31 -C. ©.1000E 06
RESTRAINTS
JOINT I 12 13 14 15 16
L 1 1 1
2 0 c 1
3 1 1 1
STIFENESS MATRIX ALTERATIONS
1 J INCREMENT
5 5 €.50CCE~C1
STIFFNESS MATRIX
ROW 1
0.1000€ 07 Q.
ROW 2
0. U.5C00E-GL
WEIGHT MATRIX
JUINT Wl "2 w3 he w5 Wé
1 C. 0. 0. 0. C. 0.
2 C.19320E 02 0.19320€ U2 0.19320E 02 0. 0. 0.
3 C. 0. C. 0. 0. 0.
RIGIC BOLY DATA FOR LINKS
JUINT 1 12 13 14 s 16
2 1 1 1 1 1 0
c -0 -c -0 -C -c -0
-0 0 ¢ 0 c 0 1
MODAL VECTOR MATRIX
JOINT 1
1 0.10000E O! O. 0. 0. 0. -c. 0. 0.
2 0. C.100G0E O1 0. -0. 0. G. c. c.
3 0. G. 0.10000€ 01 0. -o0. C. 0. 0.
4 0. 0. 0. 0.10000E 01 O. v, . .
5 0. 0. 0. . 0.1C00CE 01 C. G. 0.
6 0. c. 0. G. 0. C.1CCO0E 01 C. 0.
JOINT 2
1 0.10000E 01 O. c. 0. 0. 0.1C000E 01 C. 0.
2 o. G.10000E 61 O, -0. 0. 0. 0. 0.10000¢ 01
3 0. U 0.10000F 01 -C.1CO00E 01 -O. 0. C. 0.
4 0. 0. 0. 0.10000E 61 O. Cc. 0. 0.
5 0. G 0. 0. 0.1000CE 01 0. 0. 0.
6 0. 0. 0. C. 0. G.1CCCCE 01 C. .
JOINT 3
I 0.1600CE 01 . 0. c. 0. 9.1C000E 41 -C. 0.
2 0. €.10000t U1 O. -0. 0. -0.1COCCE Gl -0.10U00E Ol 0.
3 0. 0. 0.1C000E 01 -0.10000E 01 0.1CO0CE Ol C. -c. 0.
« 0. U. 0. C.10000€ 01 O. c. -0. c.
5 0. 0. 0. 0. 0.1C00CE Ol ¢C. -C. 0.
6 O. o. 0. o. 0. 0.1CCO0E GL  C.100GOE Ol C.
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GENERALIZEC MASS FATRIX

ROW 1

0.50C0&-C1  C. c. ~U. a. C.50CCE~C1 C. 0.

Riw 2

0. 0.5V00E-01 C. -C. C. C. C. 0.5000E-01
RUn 3

0. U. C.500CE-01 -0.50C0E-O1 C. C. 0. 0.

RUW 4

=0. -C. ~C.5C00E-01 (.50C0€E-U1 -C. -C. ~C. -0.

ROW 5

0. . c. ~0. C. C. C. 0.

ROW 6

0.5000E-C1 ¢ C. -0. Ce C.50C0E-C1 GC. 0.

RUW 7

0. G C. -0. C. C. C. 0.

ROW 8

0. C.5000€-C1  C. -C. C. [ Q. 3.5000E-C1

GENERALIZED STIFFNESS ¥aTRIX

KO 1

O. O. C. C. c. C. Q. 0.

RCW 2

0. 0. C. 0. C. C. C. 0.

L] 3

0. [ C. Ce. C. C. 0. 0.

HOW 4

0. C. C. C. c. C. C. 0.

ROW 5

0. e Ce C. C. C. Ge 0.

ROW 6

0. C. c. C. C. C. Ca 0.

ROW 7

0. Ce C. C. g. Ce C. 0.

ROW 8

C. C. C. [ Q. C. 0. 0.5000E-01

GENERALIZED DAMPING MATRIX CIAGCNAL
C. C. 0. Ce C. C. C. 1.0000€E~C2
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30

2
SYSTEP 2 IS ATTACHED TO | SYSTEMS
ATTACHMENT L IS TO SYSTEM 1 USING 1 TRANSFORMATIONS.
TRANSFORMATION FOR SYSTEM 1
0.70710€ 00-0.70710E 00 O.
0.7071GE 00 0.7071CE 00 0.
0. 0. 0.100COE 01
JCINT IN JOINT IN
SYSTEM 1 SYSTEM 2
2 1
3 3
SYSTEM TRANSFORMATION FOR SYSTEM 1
ROW 1
0.1000€ 01 G. c. 0. 0.
ROW 2
0. 0.1C00E 01 . 0. 0.
ROW 3
0. 0. C.1000€ 01 . .
RON 4
0. 0. c. G.1000E 01 0.
RO S
0. 0. c. 0. 0.10COE 01
RON 6
0. 0. 0. 0. 0.
ROW 7
0. 0. 0. 0. 0.
SYSTEM TRANSFORMATION FOR SYSTEM 2
ROW 1
-0.37256-08 1.0000E 00 -0. o. c.
ROW 2
<1.0000€ 0C -0.3725E-08 C. -0. -0.
ROW 3
-0. -0. 0.1000F 01 O. -C.10C0E 01
ROW 4
-0. -0. -0. 0.3725E-08 1.0CCOE 00
ROW 5
0. 0. c. -1.00C0E 00 -C.T4S1E-08
ROW 6
0. 0. . -0. -0.
ROW 7
0.T451E~08 -C-7451E-08 ~0. c. c.
ROW 8
0. . 0. 0. Cc.

SYSTEM PROCESSING

NUMBER OF BASIC SYSTEMS = 2

NUMBER OF SYSTEMS = 2

NUMBER OF DELETIONS = 7

OELETED DEGREES OF FREECOM

8 9 10 11 12

13 14

BASIC SYSTEMS USED

SYSTEM-HBASIC SYSTEM CORRESPCNCENCE

SYSTEM - BASIC SYSTEN

1

1
2

TRANSFORMATION SET 1

TRANSFORMATION FOR SYSTEM 2

-0.7071CE 00-0.70710E 00 O.
0.7071Ct 00-0.7071CE 00 O.

0. 0. 0.10000E

COMPATIBILITY

11 1 1 0 ¢

11 1 0 ¢ ©
C. 0. 0.
C. 0. 0.
C. 0. 0.
C. G. 0.
C. 0. 0.
0.1000E C1 C. G.
C. C.10C0E 01 0.

1.0000E CO -0.3725E-08 0.

-C.3725€-Cs -1.0000€& 00 -0.

~-C. -0. 0.
~Ca =-0. 0.
C. 0. -0.
1.0000€ CC 0. =0.

-0.7451€E-C8 -1.000CE 00 O.

C. 0. 0.10C0E 01

ol
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GENERALIZED MASS FMATRIX

ROW 1
0.1050€ €1 -G.1735€-17 C. O. c. -C.1863E-C9 C.10SCE 01 -0.50C0E-Cl
ROW 2
-0.1735€6-17 0.1050E ¢l C. c. C. C.1100E 01 ~0.1735E~17 -C.1863E~09
ROW 3
0. G. C.1050€ Ol -0.1863E-09 -C.11C0E Cl -C. -C. 0.
RUW 4
0. G -C.1863E-09 0.693SE-18 C.37256-09 -C. -C. 0.
ROW 5
0. 0. ~C.L100E 01 G.37256-09 C.12CQE Ol -C. -0. 0.
RON 6
-0.1863E-C9 C.11U0E Cl ~-Q. -G. -C. €C.1200E €1 -C.1863E-C9 -0.1663E-C9
ROW 7
0.1050E 01 -0.1735E-17 -C. -0. -c. ~C.1863E-C9 0.1050€ 01 -0.5000E-01
ROW 8
~0.5000E-C1 -0.1863E-09 C. C. C. ~C.1863E-CY -C.500CE-01 0.5000E-0C1
GENFRALIZED STIFFNESS MATKIX

ROW 1

0. 0. C. C. 0. C. 0. 0.

ROW 2 .

0. 0. C. C. C. C. 0. 0.

RON 3

0. C. c. 0. Cc. c. c. 0.

ROW 4

0. 0. C. 0. c. C. Cc. 0.

ROW 5

0. 0. 0. 0. C. C. c. 0.

RON &

0. c. C. C. c. c. C. 0.

ROW 7

0. Ga c. c. 0. c. C.100CE U1 O.

ROW 8

0. C. c. C. C. c. Q. 0.5000E~01

GENERALIZED CAMPING MATRIX

ROW 1

0. G. C. 0. c. C. 0. 0.

ROW 2

0. 0. Co C. C. C. C. 0.

ROW 3

0. 0. c. 0. 0. c. 0. 0.

ROW 4

0. ' C. 0. C. Cc. G. 0.

ROW 5

0. [N 0. o. C. C. c. 0.

ROW 6

0. C. C. . C. C. c. 0.

ROW 7

0. 0. c. c. c. C. 0. 0.

ROW 8

0. G. C. a. 0. C. 0. 1.0000E-02

CALCULATICNS ARE FOR TYPE t LOADING.

UNDAMPED EIGENVALLES ANC EIGENVECTCRS

EIGENVALUE NUO. 1 = 0.80GCE 00
ASSOCIATEL EIGENVECTUR
0.8133E GO -0.5819€ 00

EIGENVALUE NO. 2 = 0.125CE 01

ASSOCIATEC EIGENVECTOR
0.5819€E 0C 0.8133E 00

NEW REQUCTICN MATRIX, TReF(INVERSE)«V(UNDAMPED)
ROW

1
~0. 0.
ROW 2
-0. C.
ROW 3
-0. Q.
ROK &
-0. 0.
ROW 5
-0. G.
ROR 6
=0. 0.
ROW 7
0.6667E CO 0.7453E 00
ROW 8

-0.2666E Cl1 0.3727E 01
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32

CCMPUSITE MUDAL MATRIX FOR SYSTFEM 1

JUINT )

1 G, O
2 0. 0.
3 0. Ge
4 0. Ga
S 0. Ue
6 0. Ve
JUINT 2

1 0.66672E 0L G.T4%31E CC
2 0. 0.
3 0. Ua
4 0. Ua
> 0. Le
6 0. 0.
JOINT 3

1 0. [*28
2 0. Ceo
3 0. 0.
4 0. Ve
5 0. 0.
6 C. 0.

CCMPOSITE MODAL MATRIX FOR SYSTEM 2
JOINT 1
1 ~0.24837E-04 -C.27765E-CE
2 =0.6667ck 00 ~0,T4531E CC

3 -u. Ve
4 =0. [V
5 ~-0. Ve
6 -0. Ca
JUINT 2

1 ~0.24837C-08 -0.277T65E-CE

2 =0.33331E vl T.294517E C1
3 -0. N

4 -0. Ue

5 -U. Ue

6 -0. C.

JUINT 3

L —0.24837E-UY -0.27765E~CE
2 -0. Ja

3 -0. Ue

4 -0. V.

5 -U. Ce

6 -0.66672E 00 ~0.T4%31E CC

TRANSFURMED DAMPING MATRIX

ROW 1
0.7110E-CL -0.9I36E-01
ROW 2

~0.9938E-C1 C.1389E-00

EIGENVALUE NC. 1
=0.348509€-01 -0.904080E 0OC
ASSCCIATED EIGENVECTOR
0.10000GE 01 0. 0.219939E~01 =-C.206192E-CO

EIGENVALUE NC. 2
~0.348509€E-01 U.904080E 00
ASSOCIATEL EIGENVECTOR
0.10000CE ¢1 -C. 0.219939E-01 0.206192€~C0

EIGENVALUE Nu. 3
-C.701491€E-01 -0.110308€ 01
ASSOCIATEEL EIGENVECLTOR
=0.304153€-01 0.257412€-00 0.100CCOE 01 0.

EIGENVALUE NO. 4
~0.701491E-01 0.1103C8E O1
ASSOCIATEC EIGENVECTOR
~0.304153E-01 ~0.2574128-00 0.100C00E 01 -o0.



MAXINMU# MOCULUS OF
MAXIMUM MGCULUS UF

MINIMUM MOCULUS OF

~0.222841E-0G1

—0.253747E-G1

COLUMN
0.

-0.
COLUMN
0.

CoLUMN
0.
0.
COLUMN
0.

~0.

CRTHGGUNALITY

CHECK

DIAGUNAL ELEMENTS

DIAGONAL ELEMENTS

OFF DIAGONAL ELEMENTS NORFMALIZED BY UIAGONAL ELEMENTS

CCMPLEX UIAGONAL ELEMENTS OF ORTHOGONAL CHECK MATRIX

-0.169181E 01

0.21121CE

CCMPLEA REDUCTICA

HEAL

IMAGINARY
-0.
REAL

IFAGINARY
Je
REAL
.
IVAGINARY
Ue
REAL

IMAGINARY
-Ce.

C.

=C.

0.169181E 01

MATRIX,TR & F{INVERSE} e V(UNDAMPED)

C.

-C.

0.

-0.211210¢ 01

-0.2584E
-0.7685E
-0.2584E
0.7685E
0.3808E
~0.6864€

0.3808E

~0.1716E-00 0.6864E
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CRITICAL POINTS FOR TYPE 1 LOADING

SYSTEM
LOADED

4]

PUINT SYSTEM C.F.

LOAD COMPCNENTS FCR LGAC

1 1 7
JOINT
LOADED x1
0 C.1000€ Q1

COMPLEX LCAL VECTOR LN

~0.84649€ OC

0.12294E-00

~0.84649E CC -0.12294E-00
-0.57088E 0C -0.21452€-00

-0.57088€ OC

0.21452E-0C

RESPONSE FUR CRITICAL POINT 1 LCAD 1
FREGUENCY RESPONSE

0.7CO0E 00 C.2157€ 01 -0.2795E-01
0.7C50€ 00 C.2196E 01 -0.3077E-01
0.7100E VU 0.2237€ 01 -0.3392E-01
0.7150€ Q0 Qe2279E 01 ~0.3744E-01
0.7200E 0O C.2324E 01 -C.4138E-01
0.7450E 00 0.2372E 01 -0.4580E-01
0.7300E 0V 0.2422E 01 -0.5077&-01
0.7250€ VO C.24T4E 01 -0.5637E-01
0.74C0E 00 0.2530E 01 -0.6269E-01
0.7450€ €O 0.2588E 01 -C.6984E-01
0.75C0€ 0O C.2650€ 0l -0.7796E-01
0.7550€ 00 0.2716E 01 -0.8719E-01
0.7600E 00 0.2785E 01 -0.9772E-01
0.7€50€ 00 €.2860€ 01 -0.1098E-00
6.7700€E 00 C.2939E 01 -0.1236E-00
C.7750€ ©O 0.3023€E 01 -0.1395E-00
0.7TH00E 0O C.3113€ 01 -0.1578E-00
0.7E5CE 00 C.3210€ 0! -0.17S1E-0OC
0.7500€ 00 G.3313E 01 -0.2039€E-00
0.7950€ 00 G.3425€ 01 -0.2328E-00
0.8COCE 00 0.3545E 01 -0.2668E-00
0.8C50E G0 C.3675€ 01 -C.3067€E-00
0.8100E 00 C.3815E 01 -G.3541E-00
0.8150E 00 0.3967E 01 -0.4104E-00
0.8200E 00 C.4132€ 01l -0.4778E-00
0.8250E Q0 C.4311E 01 -0.5588€ 00
0.8300E 00 C.4506E 01 -0.6568E 00
0.82>08 00 G.4718E 01 -0.7759€ 00
0.8400€ GO C.4948E Gl -GC.9216€ 0O
0.845UE 00 C.5195E 01 -0.11C1E ©l
0.8500€ 00 0.5460E Ol -0.1322€ ol
0.8550€ 00 0.5741E 01 -0.1596E 01
0.8€00E €O 0.6C31E 01 -0.1938BE 0Ol
0.8¢50E 00 C.6320E 01 -0.2361E 01
0.8700€ 00 0.6590E 01 -0.288B5E 01
0.8750€ 20 C.6611E Ol -0.3524E Ol
0.8£CGOE GO C.6940E 01 -0.4289E 01
" 0.8850€ 00 0.6920€ 01 -0.5171€ 01
0.8900E 00 C.6685E 01 -0.6133€ Ot
0.89%0E 00 0.6180E 01 -0.7094€ 01}
0.9C00E €O €.5393€ Ol -0.7943E 01
0.9CSUE 00 0.4376€ 01 -0.8557¢€ 01
0.9100€ 00U 0.3244€ 01 -0.8859t 01
0.915CE 00 C.2134E€ 01 -0.8841E Ol
0.9200€ GO C.1158€ 01 -0.8563E 01
0.9250€ 00 0.3710E-00 -0.8118€ 01}
0.9300€ 00 -C.2177€E~00 -0.7593E 01
0.9350E 00 -C.6311€ 00 -0.7053E 01
0.9400E 00 -0.9037€ 00 -0.6539€ 01
0.9450€ 00 -0.1070€ 01 -0.6072€ Gi

X2

C.

MAGNITUCE

0.21578
0.2196E
0.2237¢
0.2280E
0.2325€
0.2372¢
0.2422E
G.2475E
0.2530¢€
0.2589¢€
0.2651E
0.2717E
0.2787E
0.2862¢
0.2941E
0.3026E
0.3117E
0.3215¢
0.3320E
0.3433¢
0.3555¢€
0.3687E
0.3831E
0.3984E
0.4160E
0.4348E
0.4554E
0.4781E
0.5033¢
0.5311¢
0.5618¢
0.5959E
0.6334E
0.6747E
0.7193E
Q. 7669€
0.8159¢
0.8639E
0.9072E
0.9409E
0.9601E
0.9611E
0.3434¢€
0.9095¢€
0.8641€
0.,8126E
0.7596€
0.708l€
0.6601€
0.6165¢€

o1
ol
o1
433
01
o1
ol
o1
o1

LCAC COMPOUNENTS

X2

1

0.

x4

X5

X6
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RESPCNSE FOR CRITICAL POINT 1 LOAD 1

FREQUENCY RESPONSE MAGNITUCE
0.950CE 00 -C.1158E 01 -0.5658E 01 0.5776E 01
0.9550E 0O -0.1192E 01 ~0.53C0E Ol 0.5432E 01
0.960CE 00 -0.1189€ 01 -C.4993€ 01 0.5133€ 0]
0.9€50E CO -0.1161E 01l -0.4733E 01 0.4873€ 01
0.97050t 00 -0.1116E 01 -0.4514E 01 0.4650€ 01
0.9750 00 -G.1062E 01 -0.4333E 01l 0.4461E 01
0.9800t 0L -C.1002E 01 -0.4184E 01 U.4302€ 01
U.9850E 0O -C.9414E 00 -C.4063E 01 0.4171€ 01
0.9%900E 00 -0.8811E 00 -0.3969E 01 0.4065E 01
0.9950€ 00 ~C.8236E 00 -0.3897E 01 0.3983E 01
1.CCO0E 0O -0.7703E 00 -0.3846E 0Ol 0.3922¢€ 01
0.1CUb%E 01 ~C.7227€ 00 -0.3813€ 01 0.3881lf 01
0.1CLOE O} -C.6820E 00 -0.3798E Ol 0.3859E 01
0.1CL15E U1 -0.6495€E 00 -0.3799E 01 0.3854€ 01
0.1C20E 0L -C.6264E 00 -0.3814E Ol 0.3865€ 01
U.1C25E 01 ~C.6141E 00 -0.3842€ 01 0.3891€ 01
0.1C30E 01 -G.6141E 0QC -0.3883E 01 0.3931E 01
0.1C35E 01 -0.6279€ 00 -0.3934E 01 0.3984E 01
0.1C4GE Q1 -0.6575€ 00 -0.39G54E 01 0.4048E 01
C.1C45E 01 -0.7C45E 00 -0.4062€ 01 0.4122E 01
U.1C50E 01 ~0.TT07E 00 -0.4134E 01 0.4205¢t 01
U.1C55E 01 -0.8580€ 00 -0.4208E 01 0.4294E 01
0.1C6GE Q1 -0.9677€ U0 -0.4280F Ol 0.4388E 01
0.1C6%E 01 -C.1101E 01 -0.4346F 01 0.4484E 01
0.1C70E O1 ~C.1257€ 01 -0.4402E 01 0.4578E 01
U.1C75E 01 -0.1436E 01 =-0.4441E 01 0.4668E 01
0.1C80E 01 ~C.1635E 01l -0.4459€ 01 0.4749E 01
0.1C85E Ol -0.1450E 01 -0.4450€ 01 0.4819E 01
0.1C90E 01 -C.2076E 01 -0.4410E 01 0.4874E 01
0.1C95€ 01 -C.2305€ 01 -C.4335€ 01 0.4910F 01
U.1100E 01 -C.2531E 0l -0.4226E 01 0.4926€ 01
0.11G5€ 01 -0.2745E 01 -0.4083€ 01 0.4920£ 01
0.1110€ 01 -C.2940F 01 -0.3908f Ol 0.4891E 01
0.1115€ 01 -C.3110E Ol -0.3709¢ 01 0.4840E 01
0.1120€ vl -0.3251t 01 -0.3490E 01 0.4769E 01
0.1125E 01 ~0.3360F 01 -0.3259€ 01 0.4681E 01
0.1130€ 01 -G.3438E 01 -0.3023€ 01 0.4578¢€ 01
G.1135€ 01 -0.3485E 01 -0.2788€ Ol 0.4463€ 01
0.1140E Ol -0.3505€ 01 -0.2560E Ol 0.4340E 01
U.1145E 01 -C.35%01E 01 -0.2341E Ol 0.4212E 01
0.1150€ 01 -C.3477E 01 -0.2135E 01 0.4080¢ 01
0.1155¢€ Ol -0.3437€ 01 -0.1943E 01 0.3948E 01
0.116CE O} -C.3383E 01 -0.1766E 01 0.3816€ 01
0.116%E 01 -0.3320E 01 -0.1604€ 01 0.3687€ 01
C.117CE 01 ~C.3249E 01 -0.1457E Ol 0.3561E 01
0.117%E Ot -0.3174E O1 -0.1324E Ol 0.3439€ 01
0.1l8vE Ol -C.3096E 01 -0.1204E 01 0.3322€ 01
O«.11L5€ 01 -C.3016€ 01 -C.1096E 01 0.3209E 01
0.1130€ 01 -C.2935E 01 -0.9987E 00 0.3101E 01
0.1195€ 01 ~0.2856E Ol -0.9113E 00 0.2998E 01

PARTICIPATION FACTORS FOR MAXIMUM RESPONSE AT W = C.9050
0.100002 01 O. 0. 0. C. Q. 0.33762E Ol 0.94556F 01
0. 0. 0. 0. C. 0. -0.85573E 01 (0.29260F 02

RESPCNSE PLUT CUMPLETED.
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SYSTEM NLMBER 1
LOACING CONCITICN NUMBER 1
FREQUENCY = 0.9050
ATTACHMENT MODE LOAD FULTIPLIERS
REAL IMAGINARY
2.53G3E-01 1.8909¢ 00

ACCELERATIUN VECTORS FNDR SYSTEM 1

MODAL DEFLECTIUN MASS ACCELERATION
REAL IMAGINARY REAL IMAGINARY
JOINT 1
1 1.G0COE CO -C. 1.000CE 00 0.
2 C. -C. -0. 0.
3 C. -C. -0. 0.
4 c. -C. -0. 0.
e .5 C. -C. -0, 0.
6 C. -C. -0. 0.
JOINT 2
1 4.3762E 00 -8.5573E 00 4.3762E 00 -8.5573E €O
2 c. -C. -0. 0.
3 C. -C. -0. 0.
4 C. ~C. =0. 0.
5 Cc. -C. -0. 0.
[ C. -C. -0. 0.
JOINT 3 :
1 1.0CO0E 00 -C. 1.006CE 00 0.
2 c. -C. -0. 0.
3 C. -C. -9, 0.
4 c. -C. -0. 0.
5 c. -C. -0. o.
6 c. -C. -0. 0.
PRINT-UUT FOK SYSTEM 1 CUMPLETEG.
SYSTEM NUMBER 2
LOACING CONCITICN NUMBER 1
FREQUENCY = 0.905¢C
ACCELERATION VECTORS FOR SYSTEM 2
MGLAL DEFLECTION MASS ACCELERATICA
REAL IMAGINARY REAL IMAGINARY
JOINT 1
1 -1.63C3E-08 3.1878E-08 -1.6303E-08 3.1876E-C8
2 ~4.3762E 00 8.5573E 00 ~4.3762E VO 8.5573E CC
3 C. c. 0. 0.
JOINT 2
1 .. =-1.6303E-08 3.1878E-08 ~1.6303E-08 3.1878E-C8
2 5.0797€ Q0 3.7817E 01 -2.158CE-01 3.9531F Cl
3 [ c. 0. 0.
JOINT 3
1 -1.63C3€-08 2,1878£-08 ~1.6303E-08 3.1878€-CH
2 -1.00C0E 00 c. ~1.000CE 00 0.
3 [ C. 0. 0.
MEMBER OUTPLT FOR SYSTEM 2
USING MODAL DEFLECTION DISPLACEMENTS
AZTIX GAMMA x1 THETAL x2
1.0000€ 00 -1.0000E OC 0. -0. C. -C. 0. -C.
0. -0. c. -C. C. -C. 0. -0.
- 0. 0. c. -0. C. ~0. 0. -0.

JTA JT8 P{REAL) P{IMAGINARY)
2 3 C. -0.

PRINT-0OUT FOR SYSTEM 2 COMPLETED.

THETAZ
-0.
-0.
-0.

JPL TECHNICAL MEMORANDUM NO. 33-290

37



JPL TECHNICAL MEMORANDUM NO. 33-290

C. Comparison with Other Methods

The following page is a facsimile printout graph, showing data points based
on an equation given in “Mechanical Vibration” by Den Hartog of the Massa-
chusetts Institute of Technology, as cited earlier in this Report.
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IX. USEFUL TECHNIQUES

A. Modifying Output

If the response output is desired for a point not along
one of the coordinate axes, an additional one-point rigid
system may be attached at that point with the proper
orientation of coordinate axes.

B. Using Test Data

When modal test results are being used and it is not
desired to input all the test points to develop the mass
matrix, the test mass matrix may be developed by using
0-point masses and modifications to the generalized mass
matrix.

C. Using Two Systems to Represent a Single
Structure

If the modes or structure are known to be subdivided
into two distinct sets such that all displacements are
completely defined by one system or the other, never a
combination of the two (such as dividing planar struc-
tures into in-plane and out-of-plane models), the two
models-may be attached to each other at a point or set
of points rigidly connected to one another and the com-
bination attached to other systems only through the sys-
tem defining the motion of the attachment. No mass
should be associated with the points for which the mo-
tion is defined in the other model.

X. PITFALLS

The use of the modal combination program has re-
sulted in many undesired results and the current writeup
has incorporated statements intended to prevent repeti-
tion of these errors.

When the generalized stiffness (or damping) matrix of
the composite structure has large terms (larger than
roundoff) in the rows and columns corresponding to the
rigid body motion of the primary system, it is indicative
of a discrepancy in geometry, Sometimes these discrep-
ancies are intentional; other times they are due to errors.
It is legitimate to match the motion of two points at
different nearby locations if there is not going to be any

rotational input of the primary system, but this will give
rise to elastic deformation of the structure when the pri-
mary system is subjected to rigid body rotations. The
use of rigid body modes of systems other than the pri-
mary system as independent (such use is improper) also
gives rise to large elements in the rigid body rows and
columns of the composite stiffness matrix.

Care must be taken that dependent modes are not
chosen that have displacements at attachment points that
are linear combinations of one another. A simple example
is given in Sketch No. 5 and in the tabular data below
for an indeterminantly supported beam.

CONSTRAINT MODE |
—

} 4_\2

L S

N3

|l o~

AN ~

“e8————CONSTRAINT MODE 2

Sketch No. 5
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Only one vertical support motion may be used as a
constraint mode, as a second constraint mode would be
a linear combination of the first and rigid body modes.

Mode
Point
Trans. Rot. Const. 1 Const. 2
1 1.0 0 0 0
2 1.0 1.0 1.0 0
3 1.0 20 0 1.0
0.5 X Rot. — 0.5 X const. 1 = const. 2

A particular example that has caused repeated trouble
is the statically indeterminate attachment of a rigid struc-
ture or a structure that is attached at a rigid part (pos-
sibly rigid only in a plane or out of a plane). All modes
being eliminated in such a case can’t be from the system
being added in this case, as the displacements of the
points being attached in one of the modes are a linear

JPL TECHNICAL MEMORANDUM NO. 33-290

combination of the displacements in the other modes. If
both the system being attached and the system to which
it is attached are rigid in the area of attachment, only a
statically determinate attachment can be used. If the
areas of attachment aren’t absolutely rigid but are quite
stiff relative to the remainder of the structure, it is some-
times advantageous to idealize the area as rigid and use
only a statically determinate attachment. It must be
recognized that the modification of attachment locally
changes the load paths, and some of the member loads
in the immediate area will be in error. The error in the
remainder of the structure will be small if the portion of
the structure idealized as rigid is, in fact, stiff relative
to the rest of the structure.

A check should always be made to ensure that a mode
is removed corresponding to each compatibility condi-
tion enforced.

If a planar or linear composite structure is being ana-

lyzed, it may be necessary to input arbitrary out-of-plane
masses to prevent [Mgr] from being singular.
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